4HOMEP

ISSN 2304-9081

ЭЛЕКТРОННЫЙ ЖУРНАЛ On-line версия журнала на сайте http://www.elmag.uran.ru

БЮЛЛЕТЕНЬ

ОРЕНБУРГСКОГО НАУЧНОГО ЦЕНТРА УРО РАН

2019

УЧРЕДИТЕЛЬОРЕНБУРГСКИЙ НАУЧНЫЙ ЦЕНТР УрО РАН

© А.А. Мушинский, М.А. Тихонова, 2019

УДК: 634.8.034;631.8.022.3; 631.811.98;631.815.2

А.А. Мушинский, М.А. Тихонова

ВЛИЯНИЕ ЛИГНОГУМАТОВ НА ЧЕРЕНКИ ВИНОГРАДА В УСЛОВИЯХ ЗАКРЫТОГО ГРУНТА

Оренбургская опытная станция садоводства и виноградарства ВСТИСП, Оренбург, Россия

Цель. Изучить эффективность действия лигногуматов на регенерационную способность одревесневших черенков винограда для получения стандартных саженцев.

Материалы и методы. Исследования выполнены на базе «Оренбургской опытной станции садоводства и виноградарства ВСТИСП» в период с 2016-2018 гг., в условиях закрытого грунта в соответствии с общепринятыми методическими рекомендациями. Объекты исследований — черенки винограда сорта Августин, Восторг, Память Домбковской. Использованные препараты: Лигногумат марка В-Fe 12% водный раствор с хелатом железа; Лигногумат марка АМ калийный.

Результаты. Препараты улучшали и ускоряли способность сортов винограда к ризогенезу, процесс каллусообразования. Лигногумат АМ калийный по сортам — на 74-92%, Лигногумат марка В-Fe — 68-87% в сравнении с контролем. Анализ экспериментальных данных свидетельствует о том, что высокоэффективным препаратом является Лигногумат АМ калийный.

Заключение. В результате исследований препараты Лигногумат АМ калийный и Лигногумат марка В-Fe увеличивали способность черенков к укоренению, отмечено увеличение процента укоренения черенков винограда. Экспериментальные данные свидетельствуют о том, что высокоэффективным препаратом является Лигногумат АМ калийный.

Ключевые слова: лигногуматы, виноград, сорт, черенок, саженец.

A.A. Mushinskiy, M.A. Tikhonova

INFLUENCE OF LIGNOHUMATES ON GRAPE CUTTINGS IN CLOSED GROUND CONDITIONS

Orenburg experimental station of horticulture and viticulture, Orenburg, Russia

Objective. To study the effectiveness of the lignohumates on the regenerative ability of lignified grape cuttings to obtain standard seedlings.

Materials and methods. The studies were carried out on the basis of "Orenburg experimental station of horticulture and viticulture VSPISP" in the period from 2016-2018, in conditions of closed ground in accordance with generally accepted guidelines. Studies were performed on cuttings of grapes Augustine, Delight, Memory Dombkowski. Preparations: Lignohumate grade B-Fe; Lignohumate grade am potassium-content of humic substances

Results. During the studies, the preparations improved and accelerated the ability of grape varieties to rhizogenesis, the process of callus formation Lignohumate AM potassium in varieties 74-92%, Lignohumate mark B-Fe-68-87%, the studied variants exceeded the control values.

Conclusion. As a result of researches preparations Lignohumate am potash and Lignohumate mark B-Fe increased ability of cuttings to rooting, increase in percent of rooting of cuttings of grapes is noted. Experimental data indicate that Lignohumate AM potassium is a highly effective drug.

Key words: lignohumates, plant, grape, variety, stalk, seedling.

DOI: 10.24411/2304-9081-2019-14040

Введение

Виноград размножают вегетативным способом — черенками, привитыми черенками, отводками. В основе вегетативного размножения винограда лежит его способность к регенерации, то есть возобновлению утраченных органов и развитию целого растения. Растения, выращенные из черенков и отводков, имеют ряд преимуществ: они генетически однородны и сохраняют морфологические признаки и свойства сорта, вступают в плодоношение на 2-3 год [1, 2].

В настоящее время накоплен определенный материал по использованию стимулирующих веществ с целью ускорения роста различных растений. Число новых физиологически активных веществ (ФАВ) увеличивается с каждым годом, в связи с этим возникает необходимость более глубокого и детального изучения сущности их действия на растения, разработки рациональных и эффективных приемов применения [3].

Особого внимания заслуживает использование стимуляторов роста при вегетативном размножении, поскольку они обладают высокой физиологической активностью и применяются для стимулирования корнеобразования и каллусообразования легко- и трудноукореняющихся сортов.

Гуминовые препараты представляют собой высоко концентрированную смесь биологически активных веществ, выделенных из экологически чистого сырья природного происхождения. Под их действием в клетках растений изменяется проницаемость клеточных мембран, повышается активность ферментов и скорость физиологических и биохимических процессов, стимулируются процессы дыхания, синтез белка и углеводов. Гуминовые препараты являются неспецифическими активаторами иммунных механизмов, кроме того они стимулируют развитие корневой системы, регулируют корневое и внекорневое питание [4, 5].

Цель исследований – изучить эффективность действия лигногуматов на регенерационную способность одревесневших черенков винограда для получения стандартных саженцев.

Материалы и методы

Исследования выполнены на базе ФГБНУ «Оренбургская опытная станция садоводства и виноградарства ВСТИСП» в период 2016-2018 гг. в отапливаемой теплице. Субстратом для укоренения являлась смесь плодородной почвы с опилками в соотношении 2:1. Объекты исследований служи-

ли черенки сортов винограда: Августин, Восторг, Память Домбковской. В работе использовались препараты: Лигногумат марка В-Fe и Лигногумат марка АМ К (контролем служила вода). Повторность опыта трехкратная, по 20 черенков в каждом повторении. Обработку проводили ручным ранцевым опрыскивателем в утренние часы. Исследования проведены по общепринятым методикам [6, 7].

Сроки черенкования 02.02-05.02.2018 г. Сроки проведения обработок: замачивание черенков, первая подкормка через 35-45 суток (фаза 3-4 листьев), последующие две обработки через 10 дней. Учеты развития саженцев проводили с момента высадки (І декада апреля) в закрытый грунт до выкопки (ІІ декады сентября).

Во второй декаде февраля после нарезки черенков винограда, длиной 15-20 см с 2-3 глазками, так чтобы нижний срез был под узлом, на котором расположен нижний глазок, а верхний на 2,0-2,5 см выше верхнего глазка. Черенки замачивали в воде на 48 часов, а затем на 1/3 погружали в растворы Лигногуматов с экспозицией 3 часа. Концентрацию растворов гуминовых препаратов определяли согласно инструкциям к ним.

Черенки выставлялись на кильчевание в кильчеватель при температуре 18-24°C. Учеты развития саженцев проводили с момента высадки в закрытый грунт (I декада апреля) до выкопки (III декада сентября).

Результаты и обсуждение

При анализе влияния гуминовых препаратов на сроки каллусообразования одревесневших черенков винограда прослеживается разная отзывчивость растений (табл. 1).

В результате исследований в опыте с препаратом Лигногумат АМ калийный выделились все сорта по первым признакам каллусообразования (8-12 дней), в сравнении с контрольным вариантом (12-18 дней). В опыте с препаратом Лигногумат марка В-Fе каллусообразование отмечено на 10-13 день в сортах Августин и Память Домбковской, что находилось на уровне контроля. Восторг относится к трудноукореняемым сортам, образование каллуса при применении препаратов отмечено на 12-15 день, в контрольном варианте на 15-18 день. Лучшие показатели нарастания каллуса отмечены в опыте с препаратом Лигногумат АМ калийный у сортов Августин, Память Домбковской (8-11 день).

Таблица 1. Влияние препаратов на сроки каллусообразования одревесневших черенков винограда 2016-2018 гг.

Сорт	Препарат	Первые признаки каллусообразования, дн.	Образование зачатков корней, дн	Процесс каллу- сообразования на 18 день, %
Августин	Лигногумат марка АМ калийный	8-10	18	92
	Лигногумат марка В-Fe	10-12	18	87
	Вода (к)	12-14	20	83
HCP ₀₅	-	-	-	1,74
Восторг	Лигногумат марка АМ ка- лийный	10-12	21	74
	Лигногумат марка B-Fe	12-15	23	68
	Вода (к)	15-18	23	59
HCP ₀₅	-	-	-	0,37
Память Домбков- ской	Лигногумат марка АМ ка- лийный	9-11	18	86
	Лигногумат марка В-Fe	11-13	18	81
	Вода (к)	12-14	20	78
HCP ₀₅	-	-	-	1,27

Образование зачатков корней при использовании препарата Лигногумат АМ калийный зарегистрировано на 18 день и было выше у сортов Августин — 92% и Память Домбковской — 86%, а у сорта Восторг на 21 день — 74%. Образование зачатков корней при использовании препарата Лигногумат марка В-Fe зарегистрировано на 18 день и было выше у сортов Августин — на 87% и Память Домбковской — на 81%, а у сорта Восторг на 23 день — на 68%, в контрольном варианте (59%).

В ходе исследований установлено, что препараты Лигногумат АМ калийный и Лигногумат марка В-Fe улучшали и ускоряли способность сортов винограда к ризогенезу. Анализ экспериментальных данных свидетельствует о том, что высокоэффективным препаратом является Лигногумат АМ калийный. При обработке винограда указанными препаратами также увеличивается каллусообразовательный эффект.

Укоренение высаженных черенков винограда сорта Августин (60 шт.) при обработке препаратами находилось в пределах от 36-43 шт. в зависимо-

сти от варианта опыта (в контроле – 32 шт.). Максимальный показатель отмечен при обработке Лигногумат марка АМ калийный – 43 шт. (рис. 1).

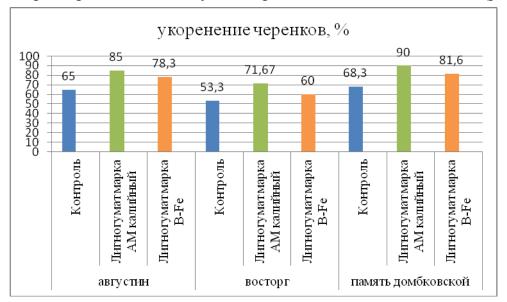


Рис. 1. Влияние препаратов на укореняемость черенков винограда,% (2016-2018 гг.)

Опытные варианты превышали контрольный на 8 шт., что составило 30,7%; Лигногумат марка АМ калийный обеспечивал укоренение на уровне 85,0%, а Лигногумат марка B-Fe на 4 шт. (20,5%), при доле укоренения 78,3%.

При обработке сорта Восторг количество вегетирующих черенков винограда находилась в пределах 47-51 шт. в зависимости от варианта опыта (в контроле — 39 шт.). Максимальный показатель отмечен при обработке Лигногумат марка АМ калийный (51 шт.). Исследуемые варианты превышали контрольный на 11 шт., что составило +34,3%. В опыте с препаратом Лигногумат марка АМ калийный доля укоренившихся черенков достигала 71,7 %, а с Лигногумат марка В-Fe — на 4 шт. (12,5%), что составило 60,0%.

По высаженным черенкам винограда сорта Память Домбковской при обработке препаратами показатель укоренения находился в пределах 49-54 шт. в зависимости от варианта опыта (в контроле 41 шт.). Наибольший показатель отмечен при обработке препаратом Лигногумат марка АМ калийный (54 шт.; 90,0%), что превышало контрольный уровень на 13 шт. (+31,7%); тогда как в опыте с препаратом Лигногумат марка В-Fe контрольный уровень был превышен на 8 шт. (19,5%), а процент укоренения составил 81,6% (в контроле – 68,3%).

Заключение

В результате исследований установлено, что препараты Лигногумат

Бюллетень Оренбургского научного центра УрО РАН, 2019, №4

АМ калийный и Лигногумат марка B-Fe увеличивали способность черенков изученных сортов винограда к укоренению. Анализ экспериментальных данных свидетельствует о том, что более эффективным препаратом является Лигногумат марка АМ калийный, который улучшал процесс ризогенеза и увеличивал каллусообразный эффект.

(Статья подготовлена в соответствии с планом НИР на 2019-2021 гг. ФГБНУ «Оренбургская ОССиВ ВСТИСП» №0760-2019-0005)

ЛИТЕРАТУРА

- 1. Тихонова М.А., Мурсалимова Г.Р. Перспективы развития и производства посадочного материала винограда в Оренбургской области. Плодоводство и ягодоводство России. 2015. 42: 287-291.
- 2. Шатилов Ф.И. Северное виноградарство России. Оренбург: ОГУ, 1998. 146 с
- 3. Wallschlager D., Desai M.V., Wilker R.D. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, air, and soil pollution, Aug. 1996. 90(3/4): 507-520.
- 4. Тихонова М.А. Влияние перспективных стимуляторов на придаточное корнеобразование у одревесневших черенков винограда. В сб.: Состояние, перспективы садоводства и виноградарства Урало-Волжского региона и сопредельных территорий. 2013: 267-273.
- 5. Тихонова М.А., Мурсалимова Г.Р. Действие гуминовых препаратов на развитие черенков винограда в условиях закрытого грунта. Перспективы использования инновационных форм удобрений, средств защиты и регуляторов роста растений в агротехнологиях сельскохозяйственных культур. Под редакцией В.Г. Сычева. 2018: 2015-2017.
- 6. Доспехов Б.А. Методика полевого опыта М.: АльянС, 2011. 352 с.
- 7. Макаров С.Н. Научные основы методики опытного дела в виноградарстве. Кишинев, 1964. 280 с.

Поступила 19 ноября 2019 г.

(Контактная информация: **Мушинский Александр Алексеевич** – д. с.х. н., доцент, Врио директора ФГБНУ «Оренбургская ОССиВ ВСТИСП»; адрес: 460041, г. Оренбург, Нежинское шоссе, 10; тел. +79058193592, e-mail: san2127@yandex.ru;

Тихонова Марина Александровна, к. б. н., старший научный сотрудник, ФГБНУ «Оренбургская ОССиВ ВСТИСП»; адрес: 460041, г. Оренбург, Нежинское шоссе, 10; тел. 8 (3532) 47-30-42, e-mail: orennauka-plodopitomnik@yandex.ru)

LITERATURE

- 1. Tikhonova M.A., Mursalimova G.R. Prospects of development and production of planting material of grapes in the Orenburg region. Fruit and berry growing in Russia. 2015. 42: 287-291.
- 2. Shatilov F.I. Northern viticulture of Russia. Orenburg: OSU, 1998. 146 p.
- 3. Wallschlager D., Desai M.V., Wilker R.D. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, air, and soil pollution, Aug. 1996. 90 (3/4): 507-520.
- 4. Tikhonova M.A. Influence of perspective stimulants on adventitious root formation in lignified cuttings of grapes. In the collection: State, prospects of horticulture and viticulture of the Ural-Volga region and adjacent territories. 2013: 267-273.
- 5. Tikhonova M.A., Mursalimova G.R. the effect of humic preparations on the development of grape cuttings in closed ground conditions. Prospects for the use of innovative forms of ferti-

DOI: 10.24411/2304-9081-2019-14040

Бюллетень Оренбургского научного центра УрО РАН, 2019, №4

lizers, protection agents and plant growth regulators in agricultural technologies of crops. Edited by V. G. Sychev. 2018: 2015-2017.

- 6. Dospekhov B. A. Technique of field experience M.: Alliance, 2011. 352 p.
- 7. Makarov S.N. Scientific basis of method of experimental work in viticulture. Chisinau, 1964. 280 p.

Образец ссылки на статью:

Мушинский А.А., Тихонова М.А. Влияние лигногуматов на черенки винограда в условиях закрытого грунта. Бюллетень Оренбургского научного центра УрО РАН. 2019. 4. 6с. [Электр. pecypc] (URL: http://elmag.uran.ru:9673/magazine/Numbers/2019-4/ Articles/MAA-2019-4.pdf). **DOI: 10.24411/2304-9081-2019-14040**

DOI: 10.24411/2304-9081-2019-14040